Likelihood based inference for monotone response models
نویسندگان
چکیده
منابع مشابه
Likelihood Based Inference for Monotone Response Models
The behavior of maximum likelihood estimates (MLEs) and the likelihood ratio statistic in a family of problems involving pointwise nonparametric estimation of a monotone function is studied. This class of problems differs radically from the usual parametric or semiparametric situations in that the MLE of the monotone function at a point converges to the truth at rate n (slower than the usual √ ...
متن کاملLikelihood Based Inference For Monotone Functions: Towards a General Theory
The behavior of maximum likelihood estimates (MLE’s) and the likelihood ratio statistic in a family of problems involving pointwise nonparametric estimation of a monotone function is studied. This class of problems differs radically from the usual parametric or semiparametric situations in that the MLE of the monotone function at a point converges to the truth at rate n (slower than the usual √...
متن کاملLikelihood based inference for diffusion driven models
This paper provides methods for carrying out likelihood based inference for diffusion driven models, for example discretely observed multivariate diffusions, continuous time stochastic volatility models and counting process models. The diffusions can potentially be nonstationary. Although our methods are sampling based, making use of Markov chain Monte Carlo methods to sample the posterior dist...
متن کاملLikelihood based inference for diffusion driven state space models
In this paper we develop likelihood based inferential methods for a novel class of (potentially non-stationary) diffusion driven state space models. Examples of models in this class are continuous time stochastic volatility models and counting process models. Although our methods are sampling based, making use of Markov chain Monte Carlo methods to sample the posterior distribution of the relev...
متن کاملAutomated Likelihood Based Inference for Stochastic Volatility Models∗
In this paper the Laplace approximation is used to perform classical and Bayesian analyses of univariate and multivariate stochastic volatility (SV) models. We show that implementation of the Laplace approximation is greatly simplified by the use of a numerical technique known as automatic differentiation (AD). Several algorithms are proposed and compared with some existing methods using both s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2007
ISSN: 0090-5364
DOI: 10.1214/009053606000001578